RAW MATERIAL IN EXTRUSION
Raw material for Extrusion

BIOPOLYMER Base
generates the matrix for the *Starch* and *Protein* extrudates: of the cereals (wheat, corn, oat, rice, barley, etc.), tubers (potatoes, yuca) or oilseeds (after oil extraction: soy).

INGREDIENTS
These influence both the cooking level, the blending properties and the product quality:
- Modified starches
- Sugar
- Fibers, bran
- Milk proteins
- Lipids, emulsifiers
- Minerals
- Flavors
Production of grains in the world

Wheat: 28%
Corn: 36%
Rice: 19%
Soy: 11%
Barley: 6%

2,500 Million Tons (cereals + oilseeds), 2015
World production (2011) = 2,287 MT (470 MT of rice)

- **EUROPE**
 - 1st wheat world producer (137 Mt)
- **RUSSIA**
 - 1st barley world producer
- **CHINA**
 - 2nd wheat world producer (118 Mt)
 - 2nd corn world producer (183 Mt)

- **UNITED STATES**
 - 1st corn and soy bean world producer (314 Mt + 87 Mt)
Composition of grains

<table>
<thead>
<tr>
<th>NUTRIENTS</th>
<th>MOISTURE (%)</th>
<th>PROTEIN (%)</th>
<th>TOTAL LIPIDS (%)</th>
<th>CARBOHYDRATES (%)</th>
<th>ASH (%)</th>
<th>TOTAL DIETARY FIBERS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHEAT</td>
<td>10.27</td>
<td>13.70</td>
<td>1.87</td>
<td>72.57</td>
<td>1.60</td>
<td>12.2</td>
</tr>
<tr>
<td>RICE</td>
<td>11.97</td>
<td>7.23</td>
<td>2.78</td>
<td>76.48</td>
<td>1.54</td>
<td>4.6</td>
</tr>
<tr>
<td>CORN</td>
<td>10.91</td>
<td>6.93</td>
<td>3.86</td>
<td>76.85</td>
<td>1.45</td>
<td>13.4</td>
</tr>
<tr>
<td>OAT</td>
<td>8.22</td>
<td>16.89</td>
<td>6.90</td>
<td>66.27</td>
<td>1.72</td>
<td>10.6</td>
</tr>
</tbody>
</table>
AMYLOSE is a linear chain of \(\alpha \) D-Glucose, which gives it a low molecular weight.

AMYLOPECTIN is a high-weight branched molecule with double helical chains.
COMPOSITION OF STARCH

AMYLOPECTIN
- Increases the snack’s expansion ability → Crunchy
- Increases the fragility of flakes

AMYLOSE
- Breaks down with more difficulty than amylopectin
- Increases the crunchiness and resistance of the final product
- Reduces radial expansion (SEI) and increases longitudinal expansion (LEI)
- Increases the bulk density of the extrudate

<table>
<thead>
<tr>
<th>BIOPOLYMER BASE</th>
<th>SEI</th>
<th>LEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMYLOPECTIN</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>AMYLOSE</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>
STARCH MATRIX: Corn (White or yellow)

Composition
- Endosperm: 80%
- Pericarp: 5 – 6%
- Germ: 10 – 14%

2 types of endosperm

Starch granules of various sizes
STARCH MATRIX: Corn (White or yellow)

- **Specifications of corn for extrusion:**

 - **Protein:** 8 – 10%
 - **Starch:** > 75% max
 - **Fat:** 1.5% max
 - **Moisture:** 10-13%

 Usually degermed corn flour or degermed corn meal

- **Particles sizes of “ideal” corn meal for extrusion:**

<table>
<thead>
<tr>
<th>MICRONS</th>
<th>% RETAINED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>> 1%</td>
</tr>
<tr>
<td>710</td>
<td>10 – 30%</td>
</tr>
<tr>
<td>550</td>
<td>> 55%</td>
</tr>
<tr>
<td>355</td>
<td>> 10%</td>
</tr>
<tr>
<td>250</td>
<td>< 3%</td>
</tr>
<tr>
<td>Less than 250</td>
<td>< 2%</td>
</tr>
</tbody>
</table>

- **Behaviour in extrusion:**

 - Good expansion
 - Medium to high cooking temperature required
STARCH MATRIX: Wheat (Soft, durum)

Composition:
- Endosperm: 83%
- Bran: 14%
- Germ: 3%

Quite long starch granules

Importance of gluten
STARCH MATRIX : Wheat (Soft, durum)

- **Specifications of wheat for extrusion:**
 - Protein: 10 – 14%
 - Moisture: 10 – 14%
 - Ash: 0.6 – 0.75%

- **Behaviour in extrusion:**
 - Good expansion
 - White to pale colours
 - Medium to low cooking temperature required
STARCH MATRIX : Rice and oat

Rice (Long/medium/short grain)
- The smallest grain size
- Mild flavour
- Good expansion
- White colour
- Requires the highest temperature for cooking

Oat
- Small-size granules
- Low expansion due to fibers and fat contents
- Strong flavour and light-brown colour
- Relatively low gelatinisation temperature but high mechanical energy
STARCH MATRIX: Barley and Potatoes

Barley

- Medium to large-size granules
- Normal expansion
- Light to golden brown colour
- Low cooking temperature required
- Barley/wheat mixtures give a sweet and pleasant flavour

Potatoes

- Very large starch granules
- Exhibits very high viscosity when cooked
- The starch in the potatoes expands the most
- Excellent binder
- Golden to light brown colour
- Low cooking temperature required
STARCH MATRIX: Yucca, Starches

Tapioca, Yuca
- Medium-size starch granules
- Exhibits high viscosity
- Excellent binder
- Mild flavour and white colour
- Requires moderate cooking temperatures

Starch (Native or Pregelatinised)
- Binder during extrusion
- Exhibits better expansion level
Influence of added starches on SEI and LEI corn meal matrix

<table>
<thead>
<tr>
<th>ADDED STARCHES</th>
<th>SEI</th>
<th>LEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICE</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td>WHEAT</td>
<td>0%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32%</td>
</tr>
<tr>
<td>YUCA</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12%</td>
</tr>
<tr>
<td>SOY</td>
<td>0%</td>
<td>5.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Whole-grain Cereals:

- Wheat, rice, corn, oat, barley, sorghum, millet, etc.
- Reduces expansion due to their high fiber and fat contents.
- May exhibit rancidity and develop bitter taste.

<table>
<thead>
<tr>
<th>NUTRIENTS</th>
<th>WATER (G)</th>
<th>PROTEIN (G)</th>
<th>TOTAL LIPIDS (G)</th>
<th>CARBOHYDRATES (G)</th>
<th>ASH (G)</th>
<th>TOTAL DIETARY fiber (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>10.27</td>
<td>13.70</td>
<td>1.87</td>
<td>72.57</td>
<td>1.60</td>
<td>12.2</td>
</tr>
<tr>
<td>Rice</td>
<td>11.97</td>
<td>7.23</td>
<td>2.78</td>
<td>76.48</td>
<td>1.54</td>
<td>4.6</td>
</tr>
<tr>
<td>Corn</td>
<td>10.91</td>
<td>6.93</td>
<td>3.86</td>
<td>76.85</td>
<td>1.45</td>
<td>13.4</td>
</tr>
<tr>
<td>Oat</td>
<td>8.22</td>
<td>16.89</td>
<td>6.90</td>
<td>66.27</td>
<td>1.72</td>
<td>10.6</td>
</tr>
</tbody>
</table>

“USDA National Nutrient Database” for reference of standards
PROTEIN MATRIX

- Sources: Soy, wheat, dairy protein, pulses

- Generates an elastic dough, indigestible for babies, and some are known as allergen

- With starch- or expanded cereal-based products, the high protein level:
 - Reduces expansion
 - Crunchier product
 - Firmer product

- With non-expanded cereals, the high protein level: increases firmness

- The use of a high percentage of soy or pea protein and wheat gluten and a high quantity of water may texturize: TVP or HMEC
Example of corn snack with and without soy protein:

- 100% corn flour
- 85% corn flour, 15% soy flour

Examples of Soy Crisps:
Example of fibrated or texturized soy protein:

- HMEC
- HMEC
- TVP
HMEC: FIBRATION MECHANISMS

Native State → Extrusion Cooking (Shear-Heat) → Unfolded State → Die Fibration/Lamination → Crossliking State
MINOR INGREDIENTS : main characteristics

- The ingredients in extrusion cooking consist of components of low or intermediate molecular weight: represent the smallest part of the formula
- The purpose of adding varied ingredients to the formulas is to improve the quality profile of finished products:

 Flavour and taste: sugar, minerals, aromas, etc.
 Expansion and texture: modified starches, emulsifiers, fibers, etc.
 Nutritional value: bran, milk proteins, etc.
MINOR INGREDIENTS

Bicarbonate:
- Common in “ready-to-eat” cereals
- Helps in the process by stabilising the pH → improves the formation of colour and flavour
- Sodium bicarbonate reduces radial expansion

Calcium carbonate:
- Reduces expansion
- Thinner and more regular structure

Calcium diphosphate:
- Thinner structure

Emulsifiers: dimodan, diglycerides:
- Improve the characteristics of the product (binding with the starch molecules to affect gelatinisation and reduce the viscosity of the melt)
MINOR INGREDIENTS

Fibers
- Indigestible fraction of food (cellulose, hemicellulose, gums and lignins): soluble and insoluble fibers; fibers in oat, pea, fruit, high-fiber wheat flour
- Oat and rice fiber: low expansion
- Wheat fibers create a smooth surface, small bubbles of regular size.

Hydrocolloids
- Examples: gum arabic, xanthan gum, guar, alginates, carrageenans, ...
- Improve texture properties (smoothness, firmness...)
- Maintain moisture

Lecithin:
- Functional ingredient for emulsification
- Reduces expansion and provides a finer texture

Salt:
- Crunchier texture
- < 1.5% - increases expansion
- > 1.5% - 4.5% - reduces the average size of the cell & increases the cell’s density
MINOR INGREDIENTS

Powdered cocoa
- > 3-4% → reduces expansion
- Firmer, crunchier texture in milk

Powdered milk
- Gives colour (Maillard reaction)

Honey
- Excellent increase of the Maillard reaction (light darkening)
- Up to 12% can be added (sweet and savoury formulas)

Maltodextrin
- 1% up to 10%, reduces viscosity → increases output
- More constant expansion and crunchier texture

Malt
- Gives colour and flavour
- Malt extract: reduces expansion
- Malt syrup: can create a bitter flavour in the final product if used in excess
MINOR INGREDIENTS

Sugar
- Sweetener
- Texture development: increases the crunchy sensation
- Hydrophilic effect (stabilisation of water activity, increases the gelatinisation temperature of starch)
- Darkening agent – complex with protein

Lipids and oil
- Lubricant: protect starch-based products from division → less cooking and gelatinisation
- Reduce the pressure of the die/box
- < 5% oil = increases expansion (increases cell size)
- > 5% oil = reduces expansion
- Smoother surface

Vitamins
- Many are stable, except for Vitamin A, K3 and C.
Influence of ingredients on expansion - Corn base

- NaCl & NaHCO₃
- Emulsifiers
- Fatty acids
- Sucrose
- Lipids

Corn meal base
EFFECTS OF PARTICLE SIZE

Identical operating parameters

350 rpm – 16% moisture

Corn meal – 500 µm
Corn flour – 100 µm

Corn meal – 500 µm
Corn flour – 100 µm

Smaller cellular structure

LEI
SEI
Density

All rights reserved – Part or full reproduction is forbidden.
The bigger the particle size, the longer the hydration time.

Homogeneity of the mixture and controlled particle size
Normally between 500 µm for meal and 100 µm for flour.
Basic recipes for DX Snacks

Corn curls:

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn meal</td>
<td>98-100</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>0-1</td>
</tr>
<tr>
<td>Salt</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Corn/Potato Chipstick:

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn meal</td>
<td>68-100</td>
</tr>
<tr>
<td>Potato Flour</td>
<td>0-30</td>
</tr>
<tr>
<td>Salt</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Multi-grain Snack:

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Flour</td>
<td>50-60</td>
</tr>
<tr>
<td>Wheat Flour</td>
<td>20-30</td>
</tr>
<tr>
<td>Rice Flour</td>
<td>10-20</td>
</tr>
<tr>
<td>Salt</td>
<td>0-1</td>
</tr>
</tbody>
</table>
Basic recipes for DX Snacks – breakfast cereals

Chocolate balls

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Flour</td>
<td>79.7</td>
</tr>
<tr>
<td>Sugar</td>
<td>9</td>
</tr>
<tr>
<td>Cocoa powder</td>
<td>5</td>
</tr>
<tr>
<td>Malt powder</td>
<td>5</td>
</tr>
<tr>
<td>Salt</td>
<td>0.8</td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Rings

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Flour</td>
<td>31.45</td>
</tr>
<tr>
<td>Wheat Flour</td>
<td>30</td>
</tr>
<tr>
<td>Rice Flour</td>
<td>30</td>
</tr>
<tr>
<td>Sugar</td>
<td>8</td>
</tr>
<tr>
<td>Salt</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Expanded rice

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice Flour</td>
<td>85</td>
</tr>
<tr>
<td>Sugar</td>
<td>5</td>
</tr>
<tr>
<td>Malt syrup</td>
<td>10</td>
</tr>
</tbody>
</table>
Thank you for your attention

www.clextral.com